
Implementing an experimental
RenderMan compliant

REYES renderer

Davide Pasca - dpasca@gmail.com

https://github.com/dpasca/RibTools

2010/4 (rev. 2022/11)

1

About REYES

• Reyes or REYES (Renders Everything You Ever Saw)

• A flexible renderer, developed by Lucasfilm CG

div. (“Pixar” from 1986)

• First used in 1984 in Start Trek II

• ..still used today in Pixar’s Photorealistic

RenderMan

2* Images, from top, are copyright of Paramount Pictures and Pixar (subsidiary of The Walt Disney Company)

RenderMan compliant ?

• Defines a renderer with some basic
capabilities such as:

– A RenderMan graphics state machine

– Hidden surface elimination

– Pixel filtering and anti-aliasing

– User programmable shaders

– Texture mapping

– Etc…

3

REYES features

• Native support for high level surfaces

• Dynamic LOD
– Compact representation

– Subdivide per-frame based on size on screen

– Displace geometry from textures

• High quality filtering

• Easier to deal with translucency, motion-blur,
etc.

• Can be used together with ray-tracing

4

REYES pipeline overview

Split

Dice

Displace

Shade

Sample

5

Split (1)

• A parametric surface:
P = f(u,v)

• Split until “small enough”
size (estimated) on screen

6

Split (2)

• Calculate the bounding
box in screen-space

• …test against
predetermined max
screen area

Here, the bounding box is too large..

7

Split (3)

• When too large, split the
patch

• It’s easy with parametric
primitives:

Pnew = f(unew, vnew)

New split points

8

Split (4)

• Calculate the bounds of
the new sub-patches

Still too large

9

Split (5)

• Split recursively until every
sub-patch is “small enough”…

Small enough.. this is
ready to be diced

10

What’s “Small Enough” ?

• When most sub-patches
fit in a single bucket

• When dicing (see later)

produces a suitable
number of samples
(sweet spot for performance)

A bucket

Sub-patch inside
a single bucket
Optimal

Sub-patch touches
two or more buckets
Not Optimal

11

Dice

Dicer
• Small enough sub-patches

are diced

• Generate a dense grid of
samples (1 pixel-per-
sample or more..)

Small enough  n_samples <= max_samples

max_samples is set for performance reasons
and to avoid distortion

1 pixel

12

Displace

• Apply a displacement
shader to the position
of the samples

P

Displ. shader + textures

Pdisplaced

myDisplace()

{

mag = texture(“dispmap”);

P += normalize(N) * mag;

N = calculatenormal(P);

}

13

Shade

• Apply surface and light
shaders to get the color

myShader()

{

txcol = texture(“pigment”);

Ci = diffuse(N,txcol);

Oi = 1;

}

- Position
- Surface Color

- Normals
-Lights

- …

Surface shader + textures

Sample colors

14

Sample – the micropolys

Form virtual micropolygons at the grid samples

Virtual micropolygons 1 pixel

15

Sample – sample points

Multiple sub-samples at every pixel

…choose a sampling method: regular, multi-jittered (as shown), etc.

16

Sample – gather samples

Samples get the color of the micropolygons they touch

…each sample can have many values if the mpolys are translucent !

17

Sample – convolution

Mix the samples together…

…choose a filter: box, triangular, Gaussian, Sinc, etc..

18

Sample – final pixel color

The resulting “average” color is assigned to the pixel

…repeat for every pixel 8)

19

RibTools: A RenderMan-style renderer R&D

20* Killeroo model from headus Ltd., used with permission.

RibTools’ key features

• RenderMan compliant (…almost (^^;))

– Parse RIB scene files

– C-like shaders compiler and VM

– Parametric surfaces, etc.

– Sub-pixel displacement mapping

• Open Sourced (BSD License)

• Multi-threaded

• Network-distributed

• “Future proof” SIMD

Scalability !

21

Distributed bucket rendering

• A frame is subdivided into discrete buckets
• Buckets are assigned to threads on the CPU or
to remote servers via TCP/IP
• Geometry, shaders and textures are also
transferred via TCP/IP

Multi-core CPU

Remote servers

It works today …it’s only a start. It needs optimizations, esp. network.

22

Shader system

myShader()

{

txcol = texture(“pigment”);

Ci = diffuse(N,txcol);

Oi = 1;

}

Shader.sl

RSL Compiler

__main:

mov.vv $v4 N

normalize $v5 $v4

mov.vv $v6 $v5

mov.vv $v3 $v6

mov.vv $v7 I

faceforward $v8 $v3 $v7

[…]

Shader.rrasm

Shader VM

• High-level C-like RenderMan shaders are
compiled into custom RRASM assembly

• RRASM is assembled and executed by the
Shader Virtual Machine (VM) when rendering

A shading system is an essential part of a renderer

23

Shading and SIMD (1)

Values in a grid are treated as arrays…

…

…N = {

P = {

myDisplace()

{

P += N * mag;

}

mul $v1 N mag

add P P $v1

v1 = SIMD_Mul(N, mag);

P = SIMD_Add(P, v1);

RSL

RRASM

C

RSL Compiler

Shader VM

24

Shading and SIMD (2)
Vector SIMD_Add_FPU(Vector a, Vector b)

{

for (i=0; i < vec_size; i += 1)

{

result[i] = a[i] + b[i];

}

return result;

}

Vector SIMD_Add_SSE(Vector a, Vector b)

{

for (i=0; i < vec_size; i += 4)

{

SSE_Add(&result[i], &a[i], &b[i]);

}

return result;

}

Vector SIMD_Add_LRB(Vector a, Vector b)

{

for (i=0; i < vec_size; i += 16)

{

LRB_Add(&result[i], &a[i], &b[i]);

}

return result;

}

SIMD_Add()

1x

4x

16x

SIMD_Mul()

…

25

…not fun to debug !

26

Cons and problems

• Requires highly programmable hardware (best
if with a flexible texture unit)

• The “RenderMan interface” is a fairly deep
standard to follow

• Shader compilers, optimizers.. complex stuff

• Comes with other issues:

– Cracks when tessellating, non-planar micropolys,
front plane clipping, etc.

27

Questions ?

28

References

• RibTools source code on GitHub
– https://github.com/dpasca/RibTools

• “The RenderMan Interface Specification” (aka RISpec)
– https://renderman.pixar.com/products/rispec/

• “Rendering with REYES” (from Pixar)
– https://renderman.pixar.com/products/whats_renderman/2.html

• “Production Rendering” (Ian Stephenson Ed.)
– http://amazon.com/dp/1852338210

• “Advanced RenderMan” (by A.Apodaca and L.Gritz)
– http://amazon.com/dp/1558606181

• “The RenderMan Companion” (by Steve Upstill)
– http://amazon.com/dp/0201508680

29

https://github.com/dpasca/RibTools
https://renderman.pixar.com/products/rispec/
https://renderman.pixar.com/products/whats_renderman/2.html
http://amazon.com/dp/1852338210
http://amazon.com/dp/1558606181
http://amazon.com/dp/0201508680

Appendix: RibTools system overview

30

