Implementing an experimental
RenderMan compliant
REYES renderer

Davide Pasca - dpasca@gmail.com
https://github.com/dpasca/RibTools

2010/4 (rev. 2022/11)

About REYES

Reyes or REYES (Renders Everything You Ever Saw)

A flexible renderer, developed by Lucasﬂlm CG
div. (“Pixar” from 1986) -

First used in 1984 in Start Trek I/

* Images, from top, are copyright of Paramount Pictures and Pixar (subsidiary of The Walt Disney Company)

®rixARs

RenderMan compliant ? Y;ndem.,

e Defines a renderer with some basic
capabilities such as:

— A RenderMan graphics state machine
— Hidden surface elimination I —
— Pixel filtering and anti-aliasing LR, I fL

. ,
— User programmable shaders -
: - e T
— Texture mapping [E= . L\
- EtC LN] RlSp‘her:M.- | T’:;;a‘bomid

REYES features

Native support for high level surfaces

Dynamic LOD

— Compact representation
— Subdivide per-frame based on size on screen
— Displace geometry from textures

High quality filtering
Easier to deal with translucency, motion-blur,
etc.

Can be used together with ray-tracing

REYES pipeline overview

)
O
1
o
2
)

=

I

\;

I
[PE T

58N

<

s

0,

0

1

,0

1

Split (1)

* A parametric surface:
P=1f(u,v)

* Split until “small enough”
size (estimated) on screen

1,1

Split (2)

o e (Calculate the bounding
S box in screen-space

0,0
* ..test against
< predetermined max

screen aread
/ 1.1
/ 0,1

Here, the bounding box is too large..

\ When too large, split the
> patch

It’s easy with parametric
primitives:
P = flu

new’ Vnew)

0,1

New split points

Split (4)

e C(Calculate the bounds of
the new sub-patches

VG

05,0

0,0

1

Still too large

Small enough.. this is
ready to be diced

1,0

0,1

Split (5)

e Split recursively until every
sub-patch is “small enough”...

1.1

10

What’s “Small Enough” ?

) When mOSt SUb_patCheS zuski)r;gla;ihuicr;(sefe Sub-patch touches
It ' i t bucket
fitin a single bucket ~ Abucket optima o or more buckets

e When dicing (see later)
produces a suitable

number of samples
(sweet spot for performance)

Dice

* Small enough sub-patches

Dicer are diced
g_ * Generate a dense grid of
1 pixel samples (1 pixel-per-

. sample or more..)

_eo—1%

d \ Small enough € n_samples <= max_samples
®
o
®

o ~ max_samples is set for performance reasons

° and to avoid distortion

{

}

myDisplace ()

mag = texture(“dispmap”);
P += no
N =

rmalize (N) * mag;
calculatenormal (P) ;

Displace

Apply a displacement
shader to the position
of the samples

P

{

_o—*
®

o
e A

!
1

£

t

Va

Displ. shader + textures

:
NE

X

>

e

l/

I:)displaced

13

Tystijii() texture (“pigment”); Apply Surfa Ce and Iight
R shaders to get the color

- Position
- Surface Color
- Normals
-Lights

&

Surface shader + textures

\ 4

Sample colors

14

Sample — the micropolys

Form virtual micropolygons at t

ne grid samples

=
%
s

e

>
>

R
P

g
-
A

\7

Virtual micropolygons 1 pixel

Sample — sample points

Multiple sub-samples at every pixel

]
-
-

S

S
=
ol

=
>

AT

o

...choose a sampling method: regular, multi-jittered (as shown), etc.

Sample — gather samples

Samples get the color of the micropolygons they touch

]
N
-

S

/

S
=
ol

=
>

AT

L

...each sample can have many values if the mpolys are translucent !

Sample — convolution

Mix the samples together...

]
-
-

S

o)

=
>

N
=
ol

ey
¥

...choose a filter: box, triangular, Gaussian, Sinc, etc..

Sample — final pixel color

The resulting “average” color is assignhed to the pixel

—

T
e
\\/>>,}

...repeat for every pixel 8)

/

-
>

RibTools: A RenderMan-style renderer R&D

iy x

RibTools’ key features

RenderMan compliant (..aimost (*4;)) Y'o PIXAR's

— Parse RIB scene files ARHETB
— C-like shaders compiler and VM

— Parametric surfaces, etc.

— Sub-pixel displacement mapping

Open Sourced (BSD License)

Multi-threaded
Network-distributed | Scalability !
“Future proof” SIMD

Distributed bucket rendering

Multi-core CPU

[l RibRenderToy v0.9

Remote servers

E E

* A frame is subdivided into discrete buckets

* Buckets are assigned to threads on the CPU or
to remote servers via TCP/IP

* Geometry, shaders and textures are also
transferred via TCP/IP

AAAA

...it’s only a start. It needs optimizations, esp. network.

22

Shader system

A shading system is an essential part of a renderer

Shader.sl|

myShader ()
{

txcol = texture(“pigment”);

Ci = diffuse (N, txcol);
oi =1;
}

—

RSL Compiler

* High-level C-like RenderMan shaders are
compiled into custom RRASM assembly

* RRASM is assembled and executed by the

=N

Shader Virtual Machine (VM) when rendering

Shader.rrasm

_ _main:
mov.vv Svi
normalize Sv5
mov.vv Sve
mov.vv Sv3
mov.vv Sv7
faceforward $v8

[..]

Svi
Sv5
Sve

Sv3

Sv7

l

Shader VM

Shading and SIMD (1)

Values in a grid are treated as arrays...

RSL

RRASM

myDisplace ()
{
P += * mag;

}

[
[RSL Compiler J

iy

mul S$vl mag
add P P Svl

Shader VM

vl = SIMD Mul(N, mag);
P = SIMD Add(P, vl);

24

Shading and SIMD (2)

Vector SIMD Add FPU(Vector a, Vector b)
{

for (i=0; i < vec size; i += 1)
{

result([i] = ali] + bli]l:
}

return result;

SINH{;Add() Vector SIMD Add SSE(Vector a, Vector b)

{

SIMD Mul () for (i=0; i < vec size; i += 4)

{
SSE_Add(&result[i], &al[i], &b[i]);

}

return result;

Vector SIMD Add LRB(Vector a, Vector b)
{

for (i=0; i < vec _size; i += 16)

{ 16x |

LRB Add(&result[i], &al[i]l, &b[i]);
}

return result;

25

...not fun to debug !

Cons and problems

Requires highly programmable hardware (best
if with a flexible texture unit)

The “RenderMan interface” is a fairly deep
standard to follow

Shader compilers, optimizers.. complex stuff

Comes with other issues:

— Cracks when tessellating, non-planar micropolys,
front plane clipping, etc.

?

Questions

References

RibTools source code on GitHub
— https://github.com/dpasca/RibTools

“The RenderMan Interface Specification” (aka RISpec)
— https://renderman.pixar.com/products/rispec/

“Rendering with REYES” (from Pixar)

— https://renderman.pixar.com/products/whats renderman/2.html

“Production Rendering” (lan Stephenson Ed.)
— http://amazon.com/dp/1852338210

“Advanced RenderMan” (by A.Apodaca and L.Gritz)
— http://amazon.com/dp/1558606181

“The RenderMan Companion” (by Steve Upstill)
— http://amazon.com/dp/0201508680

29

https://github.com/dpasca/RibTools
https://renderman.pixar.com/products/rispec/
https://renderman.pixar.com/products/whats_renderman/2.html
http://amazon.com/dp/1852338210
http://amazon.com/dp/1558606181
http://amazon.com/dp/0201508680

Appendix: RibTools system overview

RibRender

4 Metwork system

»* RibRenderSarvar

¥

Display drivers

RibRendar System

Scene parser

State machine

Parametric primitives
framenwork

Stochastic Hider

REL Shader Compiler

Shader WM

Scalable SIMD Vector

library

Image libraries

30

